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The reaction of AgClO4·6H2O with (+/−)-trans-epoxysuccinic acid (H2tes) in the presence of 2,6-dimethyl-
pyridine afforded a three-dimensional (3-D) AgI coordination polymer [Ag2(tes)]∞ (1), which exhibits an un-
usual 5-connected self-penetrating (44·66)2 topological net (tes=(+/−)-trans-epoxysuccinate).
Comparison of the structural differences with our relevant finding, a two-dimensional (2-D) (4,8)-connected
(45·6)2(418·610) coordination polymer [Ag4(ces)2]∞ (S1) (ces=cis-epoxysuccinate), suggests that the car-
boxyl configuration on the ternary ring backbone of H2tes or H2ces ligand plays an important role in the con-
struction of coordination networks.
rights reserved.
© 2011 Elsevier B.V. All rights reserved.
In recent years, the rational design and synthesis of silver(I) coor-
dination polymers have attracted great interest due to not only their
diversified structures and fascinating topologies but also their poten-
tial physical and chemical applications as functional materials [1−3].
In this field, utilizing suitable organic tectons with various functional
groups which exhibit versatile coordination modes coordinating with
metal atoms has been proven to be one of the most effective ways to
construct novel crystalline materials [1a]. In addition, the flexibility of
AgI coordination sphere, varying from linear to trigonal, tetragonal,
square pyramidal, and octahedral, related to coordination numbers
from 2 to 6, affords a good opportunity to study the mechanism of
the self-assembly process. Furthermore, the topological structures of
AgI coordination are subtle to the Ag–ligand interactions and the re-
action conditions [1a].

Amongst the organic ligands, especially rigid aromatic multicarbox-
ylates such as benzene- [4], naphthalene- [5], anthracene- [6], pyrene-
[7], and perylene-based derivatives [8] have been widely used to con-
struct various coordination polymers. However, only a few coordination
polymers based on the ligands with flexible ring skeletons, such as tet-
rahydrofuran-2,3,4,5-tetracarboxylic [9], 1,2,3,4-cyclobutanetetracar-
boxylic [10], 1,2,3,4,5,6-cyclohexanehexacarboxylic [11], and 1,2-
cyclohexanedicarboxylic [12] acids, have been reported to date. This is
probably due to the flexibility of the ligand skeletons, which makes it
more difficult to predict and control their structures in the final coordi-
nation networks. In this context, cis-epoxysuccinic acid (also known as
(2S,3R)-oxirane-2,3-dicarboxylic acid, H2ces, see Chart 1), has two chi-
ral centers in the ternary ring backbone as well as a pair of carboxyl
groups, which can be regarded as an interesting building tecton in coor-
dination assemblies on the basis of following considerations: (1) it has
two carboxyl groups that do not lie in one plane, which provide rich co-
ordination modes and allow it to connect the metal ions in different di-
rections. (2) The oxirane oxygen atomprovides additional binding sites,
and it can coordinate to themetal ions associatedwith two near carbox-
yl oxygen atoms. (3) Another structural feature of such coordination
frameworks constructed from above-mentioned ligands with flexible
ring skeletons is the close proximity and clustering of metal centers
by virtue of skeletal flexibility. In our previous work, H2ces has been
successfully used to construct a series of CuII coordination complexes
having dinuclear, 1-D, 2-D, and isolated Cu15 nanocluster structures
under different pH conditions, which also exhibits interestingmagnetic
properties [13].

Moreover, a 2-D (4,8)-connected (45·6)2(418·610) coordination
polymer [Ag4(ces)2]∞ (S1) (ces = cis-epoxysuccinate) was obtained
in this research. To further explore the influence of the carboxyl con-
figuration on oxirane ring backbone on the structures and properties
of their coordination polymers in this contribution, we subsequently
chose (+/−)-trans-epoxysuccinic acid (H2tes), a configurational
isomer of H2ces, to construct a new 3-D AgI coordination network
[Ag2(tes)]∞ (1) (tes = (+/−)-trans-epoxysuccinate) by taking the
advantage of the bridging coordination ability of its dicarboxylate
groups together with the flexibility of its oxirane ring, which exhibits
an unusual 5-connected self-penetrating (44·66)2 topology. Herein,
we report the syntheses, crystal/topological structures, and proper-
ties of complexes 1 and S1.
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Fig. 2. A portion view of 1 showing the coordination modes of tes (μ3-η1:η2 mode for
O1–C1–O2 carboxylate group and μ4-η2:η2 mode for O3–C2–O4 carboxylate group;
E=−x+2, y+1/2, –z−1/2; F=x−1, –y−1/2, z−1/2; G=−x+1, y−1/2, –z−1/2;
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Chart 1. Two ligands used in this work.
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Complexes 1 and S1were obtained by the reaction of H2tes or H2ces,
in the presence of excess 2,6-dimethylpyridine, with AgClO4·6H2O [14].
The compositionswere confirmed by elementary analysis and IR spectra,
and the phase purities of the bulk samples for luminescent/thermalmea-
surement were identified by powder X-ray diffraction (PXRD, see Fig. S6
in the Supplementary material). Moreover, the luminescent/thermal
properties of 1 and S1 have been briefly investigated (see Figs. S4 and
S5 in the Supplementary material).

Single crystal X-ray diffraction analysis reveals that complex 1 [15],
[Ag2(tes)]∞, has an interesting 3-D structure (see Figs. 1−4 and Figs.
S1−S2 in the Supplementary material). The asymmetric unit contains
two unique AgI ions (Ag1 and Ag2) and one fully deprotonated
(+/−)-trans-epoxysuccinate (tes) ligand (see Fig. 1). If neglecting the
Ag1⋯Ag2 bonding contact, Ag1 center is four-coordinated (also known
as a distorted tetrahedral geometry) by four O atoms of four distinct
tes ligands (Ag1−O: 2.219(3)−2.484(3)Å; O−Ag1−O: 77.29(13)
−164.82(13)°; NOTE: we have ignored the longer Ag⋯O separations
(N2.7 Å) in describing and drawing the metal coordination geometries,
see Table S2 in the Supplementary material for detailed bond parame-
ters). Also, if not considering the Ag1⋯Ag2 bonding contact, Ag2 center
is three-coordinated (known as a Y-shaped coordination geometry) by
three O atoms from three different tes ligands with the bond distances
and angles of 2.195(4)−2.481(4) Å and 74.43(12)−126.04(13)° for
Ag2–O and O–Ag2–O, respectively (see also Table S2). Expect the longer
Ag−O lengths (N2.7 Å), all other Ag−O bond distances and the bond
angles around AgI ions are typical and comparable to those observed
in the literature [16]. In addition, a very short Ag⋯Ag interaction
(2.8388(6) Å) is observed between Ag1 and Ag2 bridged by carboxylate
of tes, which is similar to those found in other complexes with Ag⋯Ag
contacts (the Van der Waals Ag⋯Ag contact distance being 3.40 Å),
and slightly shorter than that found in metallic silver (2.889 Å) [17].
Each tes ligand coordinates to seven AgI atoms (four Ag1 and three
Ag2), where the carboxylate groups adopt the different μ3-η1:η2-syn,
syn/syn,trans mode for O1–C1–O2 and μ4-η2:η2-syn,syn/syn,trans mode
Fig. 1. Viewof the local coordination environment of AgI in 1, showing the Ag1⋯Ag2 inter-
actions (cyan dashed lines) (A=−x+1, y+1/2, –z−1/2; B=x+1, –y−1/2, z+1/2;
C=−x+2, y−1/2, –z−1/2; D=x+1, y, z).
for O3–C2–O4 (see Fig. 2). Interestingly, if only considering the connec-
tions between tes ligands and Ag2 ions, the Ag2 ions are linked together
by tes ligands to form a 2-D layer (see Fig. S1 in the Supplementary ma-
terial) and the alternately arrangement of left- and right-handed helix-
es with a pith of 7.6978(8) Å are found. Furthermore, the Ag1 ions are
connected by tes ligands to give rise to the final 3D framework (see
Fig. 3).

As we all know, the analysis of chemical topology provides a conve-
nient method to understand the connectivity between the components
of the crystal structures [18]. From the topological view, if the Ag1⋯Ag2
bimetallic unit and tes ligand in 1were regarded as isolated nodes, they
both act as non-planar 5-connected nodes (see Fig. 4). Such a 3-D net-
work exhibits a rare example of 5-connected topology with the Schläfli
symbol of (44·66)2. In general, networks with 5-connectivity are quite
limited, owing to the difficulty in generating 5-connecting metal cen-
ters/clusters and organic tectons [19f]. Thus far, only several examples
for 5-connected coordination polymers have been reported [19, 20],
such as bnn net (or boron nitride) (46·64) [19a], sqp net (44c·66)
H=x−1, y, z).

Fig. 3. Part of crystal packing of 3-D network in 1 viewed along the a axis.
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Fig. 4. A schematic representation of the 3-D 5-connected network with the Schläfli symbol of (44·66)2, illustrating the connectivity of Ag1⋯Ag2 units (cyan spheres) and tes ligands
(orange spheres).
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[19b],nov net (44·66) [19c,d], and 610-nets (1oh [19e], ghw [19f], rld-z
[19g], and fnu [19h]), which all contains 5-connecting topological pat-
terns with trigonal-bipyramidal or square-pyramidal nodes. Compared
with the simplest 5-connected nets (bnn, sqp, nov, loh, and ghw), nets
rld-z and fnu are rare examples of self-interpenetrated 5-connected
network. Furthermore, our structure of 1 contains two types of dis-
torted non-planar 5-connected nodes (see Fig. 4). Interestingly, the cat-
enated 4- and 8-rings are the shortest topological rings and they
interlocked with each other. Such linkage results in the formation of
final 3-D 5-connected self-penetrating (44·66)2 topology (see Fig. S2
in the Supplementary material) [21].
Fig. 5. View of the local coordination environment of AgI in S1.

Fig. 6. A schematic representation of the (4,8)-connected (45·6)2(418·610) topological ne
spheres: cesA; yellow spheres: cesB).
In comparison with 1, when we used cis-epoxysuccinic acid (H2ces)
instead of (+/−)-trans-epoxysuccinic acid (H2tes) in this research, a
2-D (4,8)-connected (45.6)2(418·610) topological net (complex S1)
was obtained under the same conditions (see Figs. 5, 6 and Fig. S3;
brief description and discussion of S1 is in the Supplementarymaterial).
Our results, therefore, indicate that the configurational difference of
carboxyl groups on the ternary ring backbone of H2tes and H2ces
plays an important role in the formation of 1 and S1, which, from
the viewpoint of ligand design, may offer effective means for con-
structing unique coordination architectures with interesting topolo-
gy just by variations of the carboxyl configuration on flexible ring
backbones.

Also, the solid-state photoluminescent properties of complexes 1 and
S1 were investigated at room temperature, as shown in Fig. S4 in the
Supplementary material. The blue luminescence emission bands with
the peak maxima (λmax) were observed at 530 nm (λex=327 nm) for
1 and 416 nm (λex=341 nm) for S1, respectively. To further analyze
the nature of these emission bands, the photoluminescent properties of
free H2tes or H2ces have also been investigated under the same experi-
mental conditions. It should be pointed out that the free H2tes and
H2ces ligands display very weak luminescence. According to the litera-
ture [22], we can presume that the enhancement of luminescence in 1
and S1 may be mainly derived from Ag–Ag interactions and the nature
of its emitting states strongly depends on the number of metal centers
and the interactions between them.Our structures of 1 and S1 represent
two new examples of the room-temperature luminescent AgI-contain-
ing coordination polymers with novel topological networks.

In conclusion, we have successfully constructed one 3-D (1) and
one 2-D (S1) AgI coordination polymers, which exhibits a binodal 5-
connected self-penetrating (44·66)2 and a (4,8)-connected (45·6)2
(418·610) topological nets, respectively, by employing flexible (+/−)-
t of S1 (cyan spheres: Ag1⋯Ag2⋯Ag3A⋯Ag4 tetrametallic units; A=x+1/2, –y, z; red
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trans-epoxysuccinic acid (H2tes) or cis-epoxysuccinic acid (H2ces) li-
gands. The structural difference between 1 and S1 is attributable to
the intervention of different carboxyl configuration on oxirane ring
backbone of H2tes or H2ces. Finally, such flexible heteroalicyclic dicar-
boxylate ligands with different carboxyl configuration might be gener-
ally applicable for different d10 transition metal ions, such as ZnII and
CdII, to construct more functional crystalline solids with desired struc-
tures and potentially useful properties.

Acknowledgments

This work was supported by the National Natural Science Fund of
China (Grant Nos. 20801049 and 21071129), Henan Outstanding
Youth Science Fund (114100510017), and Program for New Century
Excellent Talents in University (NCET-10-0143).

Appendix A. Supplementary material

CCDC828327 and828328 contain the supplementary crystallographic
data for [Ag2(tes)2] (1) and [Ag4(ces)2]∞ (S1), respectively. These data
can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html, or from The Cambridge Crystallographic Data Centre
www.ccdc.cam.ac.uk/data_request/cif, 12 Union Road, Cambridge CB2
1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
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