交联 P(St-r-AA) 包覆 Fe₃O₄ 粒子的制备及对 Cu²⁺ 的吸附

陈志军,魏永豪,朱海燕,杨清香

(郑州轻工业学院材料与化学工程学院,河南 郑州 450002)

摘要:用乳液聚合的方法合成了交联 P(StrAA) 包覆的 Fe₃O₄ 粒子,研究了该类粒子对 Cu²⁺ 离子的吸附性能。透射电 镜(TEM)表明,交联的 P(StrAA) 包覆的 Fe₃O₄ 磁性粒子粒径约 100 nm; X 射线衍射(XRD) 分析表明,磁性粒子中磁 性物质为尖晶石结构的 Fe₃O₄;红外光谱(FT-IR)表明,Fe₃O₄ 表面的聚合物含有苯环和羧基;热重(TG) 分析表明,粒子 中磁性粒子的含量为 31%; P(StrAA) 包覆的 Fe₃O₄ 磁性粒子具有超顺磁性,比饱和磁化强度为 0.822 A·m²/kg; UV-vis表明磁性粒子能够有效吸附溶液中的 Cu²⁺离子。

磁性聚合物粒子不仅具有磁性,在外加磁场作用 下具有磁响应性可作定向运动到特定部位,或迅速从 周围介质中分离出来;而且还具有聚合物的特性,如可 通过共聚、表面改性等化学反应在粒子表面引入多种 反应性功能基(如-OH、-CHO、-NH₂、-COOH 等),也可以通过共价键结合酶、细胞和抗体等生物活 性物质^[1~3]。因此,在生物学、固定化酶、信息储存、 环境整治等领域有着广泛的应用前景^[4~6]。

交联聚合物包覆的磁性粒子由于外层具有交联聚 合物层,从而减少甚至阻隔了磁粒子与空气或溶剂的 接触,能够有效提高内部磁性粒子的稳定性。本文用 乳液聚合的方法合成了交联 P(StrAA)包覆的 Fe₃O₄ 磁性粒子,并研究了该类粒子对 Cu²⁺ 离子的吸附行 为,有望应用于生产过程 Cu²⁺ 废液的处理。由于该类 粒子表面具有羧基,可对其进一步的表面修饰改性,使 其多功能化而有望应用于更广泛的领域。

1 实验部分

1.1 原料

三氯化铁、硫酸亚铁、氢氧化钠、聚乙烯醇 124、丙 烯酸、二乙烯苯、无水乙醇:均为分析纯试剂;苯乙烯和 过氧化苯甲酰:使用前进行精制。

1.2 交联 P(StrAA) 包覆的 Fe₃O₄ 粒子的制备

将 2. 705g FeCb•6H2O 和 1. 39 g FeSO4•7H2O 溶 解于 100 mL 蒸馏水, 然后倒入三口瓶中, 在 30 ℃机 械搅拌下, 逐滴加入 0.4 mol/L NaOH 溶液 55 mL, 滴 加完后, 将温度升至 50 ℃, 晶化 2h。所得的黑色悬浮 液用水反复洗涤至中性, 80 ℃真空干燥 12 h, 即获得 Fe3O4 纳米粒子。

在 250 mL 的三口瓶中分别加入 0.8 g Fe₃O₄、 0.7g 聚乙烯醇 124 和 150 mL 蒸馏水、16 mL 苯乙烯、 1 mL 对二乙烯苯和 0.3g 过氧化苯甲酰分散后,置入 水浴锅中快速搅拌,在 20 min~30 min 内使反应体系 的温度上升至(85±1) ℃,反应 40 min。加入 12 mL 丙烯酸,并在 30 min 后将体系温度升至(90±1) ℃,缓 慢搅拌下反应 4h。反应完成后,得到深褐色的粗产 物,经洗涤,120 ℃真空干燥,即制得交联 P(SrrAA) 包覆的 Fe₃O₄ 磁性粒子。

1.3 粒子性能表征

采用德国 BRUKER 公司 AXS D8 型 XRD、JEM-2100 型透射电镜,德国 BRUKER 公司 TENSOR27 型 FT-IR 红外仪,Shimadzu DTG-60 热分析仪,美国 Quantum Design 公司产的 MPM SXL-7 磁性能测定 仪,北京普析通用仪器公司的 T6 型紫外可见分光光 度计(UV-vis)对样品的结构和性能进行表征。

收稿日期: 2010-08-19

基金项目:河南省高校科技创新人才支持计划资助项目(2008HAST IT019);国家自然科学基金面上项目(20976168) 通讯联系人:陈志军,主要从事高分子及复合材料研究, E mail:mcchenzj@zzuli.edu.cn

^{© 1994-2014} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2 结果与讨论

2.1 形貌分析

Fig. 1a 为 Fe₃O₄磁性粒子的 TEM 形貌图。从图 中可以看出,所合成的磁性粒子的粒径约为 10 nm,粒 子呈不规则的近似球型状,粒径分布均匀。Fig. 1b 是 交联 P(StrAA) 包覆的 Fe₃O₄ 粒子的形貌图,从图中 可以看出,所制备的粒子的粒径约为 100 nm,为球形 结构。

Fig. 1 TEM Pattern for Fe₃O₄ Nanoparticles(a) and Cross Linked P(St r AA) Capped Fe₃O₄ Nanoparticles(b)

Fig 2 XRD Patterns for Fe₃O₄(a) and Cross Linked P(St r AA) Capped Fe₃O₄(b)

2.2 XRD 分析

Fig. 2 分别是 Fe₃O₄粒子和交联 P(StrAA) 包覆 的 Fe₃O₄磁性粒子的 XRD 图。从图中可看出,磁性粒 子在 2 θ = 18.94°, 30.1 $^{\circ}$, 35.54°, 43.07°, 53. $^{\circ}$, 57.1°, 62.70°处出现衍射峰, 与 ASTM 851436 标准 衍射卡对照,可知所制备的粒子的 XRD 衍射峰与尖晶 石结构 的立方相 Fe₃O₄ 的衍射峰相符, 分别对应于 (111),(220),(311),(400),(422),(511) 和(440),说 明所合成的磁性纳米粒子是典型的尖晶石结构的 Fe₃O₄。

比较曲线 b 与 a, 各晶面衍射峰的位置、个数以及 强度没有明显的变化, 说明交联聚合物的包覆对 FesO4粒子的结构没有明显的影响, 包覆后的磁性颗粒 仍为尖晶石结构; 而包覆交联聚合物后的 XRD 曲线 中, 在 2 0= 20°附近有弥散峰, 说明磁性纳米粒子被聚 合物层所包覆, 且聚合物为非晶态结构。

2.3 FT-IR分析

Fig. 3 是所合成的交联 P(StrAA) 包覆的 Fe₃O₄ 磁性粒子的红外光谱图谱。图中:在 3400 cm⁻¹附近 的红外吸收峰是O-H的伸缩振动所产生的吸收峰, 2800 cm⁻¹~3000 cm⁻¹是C-H的伸缩振动吸收峰, 3023 cm⁻¹和 3058 cm⁻¹是苯环上的C-H振动吸收 峰, 696 cm⁻¹和 752 cm⁻¹处是苯环的单取代吸收峰。 1594 cm⁻¹, 1490 cm⁻¹, 1446 cm⁻¹处是苯环的骨架振 动吸收峰, 1713 cm⁻¹处是C=O的伸缩振动吸收峰, 533 cm⁻¹是Fe-O的振动吸收峰。红外光谱结果表明 所制备的粒子为交联 P(StrAA) 包覆的 Fe₃O₄ 磁性粒 子。

Fig. 3 FF IR Spectrum of Magnetic Nanoparticles

Fig. 4 TG Curve of Cross Linked P(StrAA) Capped Fe₃O₄ Magnetic Nanoparticles

2.4 TG 分析

Fig. 4 为交联 P(StrAA) 包覆的 Fe₃O₄ 磁性粒子 的热重曲线。从图中可以看出,在加热过程中,经历了 四个失重过程,对应的横坐标和纵坐标分别为:(54 ℃,99.2%)、(254 ℃,94.0%)、(420 ℃,48.6%)和 (670 ℃,31.5%)。54 ℃处的失重可能是由样品中少 量的水或单体的挥发引起的,失重为5.2%;254 ℃处 对应的可能是丙烯酸均聚物的热分解引起的失重,失 重为45.4%;420 ℃处对应的可能是苯乙烯均聚物的 热分解引起的失重,失重为6.0%;670 ℃处对应的可 能是交联共聚物的热分解引起的失重,失重为11.0%,

观层所已得,已影合物力非晶态结构。Electronic Publishir最后。法重趋于。原止。strGe结果显示,在所合成的样品

中存在有苯乙烯的均聚物较少,而丙烯酸均聚物含量 较高,交联聚合物的质量分数约为12%,Fe₃O₄约为 31%。

Fig. 5 TG Curves of Fe₃O₄ and Cross Linked P(Str AA) Capped Fe₃O₄ Magnetic Nanoparticles

2.5 磁性能分析

当铁磁材料的粒径减小到纳米尺寸,就会从多畴 变成单畴从而表现出超顺磁性。在没有磁场时,超顺 磁材料不表现出磁性能,而在磁场作用下显示出磁性 能。Fig.5 是 Fe3O4 和交联 P(StrAA)包覆的 Fe3O4 的磁性能曲线。从 Fig.5 中可以看出, Fe3O4 和交联 P (StrAA)包覆的 Fe3O4 的比饱和磁化强度(M_s)分别 为 0.955 A·m²/kg 和 0.822 A·m²/kg,表面包覆有交 联聚合物 P(StrAA)的Fe3O4 的比饱和磁化强度要比 未包覆聚合物的 Fe3O4 的低。从图中还可以看出,交 联 P(StrAA)包覆的 Fe3O4 磁性粒子具有很小的剩磁 和矫顽力,是典型的顺磁性材料。

Fig. 6 Uv Vis Spectra of Cross-Linked P(StrAA) Capped $Fe_3O_4 \ Magnetic \ Nanoparticles \ Immobilization \ of \ Cu^{2+}$

2.6 对 Cu²⁺ 吸附的分析

Fig. 6 是铜溶液和经过交联 P(StrAA)包覆的 Fe₃O₄ 磁性粒子吸附的铜溶液的 Uv-vis 谱图。从图中 可以看出,随着使用磁性粒子量增加,溶液中 Cu²⁺ 的 含量逐渐降低,在加入 0.8 g 时达到最大,与标准曲线 相比,可知此时 Cu²⁺ 的吸附量约为 32 mg/g 。交联 P(StrAA)包覆的 Fe₃O₄ 对铜溶液中的 Cu²⁺ 有一定 的吸附作用,从而使溶液的吸收峰强度降低,原因可能 是聚合物表面的羧基与铜离子结合形成络合物,导致 原溶液中 Cu²⁺ 的浓度降低。

3 结论

由乳液法制备的交联 P(S + r AA) 包覆的 Fe_3O_4 通 过表征可知磁性粒子表面含有苯环和羧基, 粒径为 10 nm; 磁性粒子的磁含量为 31% 且具有超顺磁性, 饱和 磁场强度为 0. 822 A·m²/kg; UV-vis 对其吸附 Cu²⁺ 的 行为进行研究表明其对 Cu²⁺有一定的吸附。由于 Fe_3O_4 被交联苯乙烯包覆可以提高 Fe_3O_4 的稳定性, 其表面具有官能团羧基可使磁性粒子与其他物质结合 或进行进一步的改性; 该类磁性粒子有望应用于生物 技术和生物医学、固定化酶、环境整治、蛋白质及其他 生物分子的纯化和分离等领域^[7,8]。

参考文献:

- [1] Arruebo M, Galan M, Navascues N, et al. Development of magnetic nanostructured silica2based materials as potential vectors for drug delivery applications[J]. Chem. Mater., 2006, 18(7): 1911-1919.
- [2] Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystal[J]. J. Am. Chem. Soc., 2006, 128(3): 688-689.
- [3] Cheon J, Lee J H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology [J]. Acc. Chem. Res., 2008, 41(12): 1630-1640.
- [4] Takafuji M, Ide S, Ihara H, et al. Preparation of poly(1vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions[J]. Chem. Mater., 2004, 16(10): 1977 1983.
- [5] Bao J, Chen W, Liu T T, et al. Bifunctional Aur Fe₃O₄
 nanoparticles for protein separation [J]. ACS Nano, 2007, 1(4): 293-298.
- [6] Horāk D, Babic M, Mackovā H, et al. Preparation and properties of magnetic nanσ and microsized particles for biological and environmental separations[J]. J. Sep. Sci., 2007, 30(11): 1751-1772.
- [7] Xu C J, Xu K M, Gu H W, et al. Nitrilotriacetic acid modified magnetic nanoparticles as a general agent to bind histidine tagged proteins[J]. J. Am. Chem. Soc., 2004, 126(1): 3392 3393.
- [8] Bucak S, Jones DA, Laibinis P E, et al. Protein separations using colloidal magnetic nanoparticles [J]. Biotechnol. Prog., 2003, 19 (2): 477-484.

(下转第 184 页。to be continued on P. 184)

Research Progress of TriazineDithiols Polymeric Nano Films

Yabin Wang, Fang Wang, Qian Wang, Yanni Li

(College of Science, Northwest Agriculture & Forest University, Yangling 712100, China)

ABSTRACT: The adsorption and polymerization of triazinedithiols (TDT s) compounds on metal surfaces have at traced researcher's attention due to their anticorrosion property, adhesion property, lubrication property, dielectric property and superhydrophobic property on a variety of metal substrates. The monomer layer of TDTs on metal surfaces can be polymerized photochemically, thermochemically, electrochemically or evaporatingly. The electropolymerization process offers the advantage of simultaneous formation and deposition of the polymer coatings on metal substrate from monomer electrolyte solution. These preparation methods and application area of triazinedithiol polymeric nano-films were reviewed in this paper. The polymerization mechanisms of triazinedithiol compounds on metal surface were analyzed and discussed in detail. It is proposed that the more functional polymeric nano-film can be obtained by means of the modification of triazinedithiols (TDTs) compounds. The new application of these polymeric nano-films was prospected.

Keywords: triazined it hiols; metal surface; polymeric nano-films; application

(上接第 179 页。continued from p. 179)

The Synthesis and Characterization of Cross Linked P(Str AA) Capped Fe₃O₄ Microspheres and Its Application in Immobilization of Cu²⁺

Zhijun Chen, Yonghao Wei, Haiyan Zhu, Qingxiang Yang (College of Chemical Engineering and Materials Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China)

ABSTRACT: The cross-linked P(Str-AA) capped Fe₃O₄ magnetic nanoparticles were synthesized by using emulsion polymerization. The synthesized magnetic nanoparticles were used in immobilization of Cu²⁺. The results show that the average size of the resultant cross-linked P(StrAA) capped Fe₃O₄ magnetic nanoparticles is of about 100 nm; XRD results show that the synthesized Fe₃O₄ nanoparticles and cross-linked P(StrAA) capped Fe₃O₄ magnetic nanoparticles are a spinel phase crystal. FT-IR results show that the surface of polymer have aromatic ring and carbox yl. TG results show that Fe₃O₄ nanoparticles content is approximately 31% in the magnetic nanoparticles. Sample magnetometer shows that those particles are in superparamagnetic behavior with a saturation magnetization of 0. 882 A•m²/kg. UV-vis analysis results suggest that the magnetic nanoparticles can immobilization of Cu²⁺ in solution.

Keywords: cross linked P(StrAA); magnetic nanoparticles; immobilization of Cu²⁺